SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS):: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code : Theory of Machines (19ME0310)

Course & Branch : B.Tech – ME

Year & Sem: II-B. Tech & II-Sem

Regulation: R19

UNIT-I (PRECESSION & TURNING MOMENT DIAGRAM)

1	The propeller of aero weighs 550 N and has radius of gyration of 0.9m. The propeller shaft rotates at 1900 r.p.m, clockwise, as viewed from tail end. The plane turns left,	L5	12 M
	making a U turns, i.e., through 180° of 125m radius, at a speed of 330 km/hr. Determine		
	the distance between two bearings of the propeller is 0.8m		
2	the distance between two bearings of the properties is 0.811. A ship is nitching through a total angle of 15° the assillation may be taken as simple.	T 1	12 M
2	A sinp is plicing through a total angle of 15°, the oscillation may be taken as simple	LI	12 11
	radius of guration is 45 am and it is rotating at 2400 r.n.m. Calculate the maximum		
	radius of gyradion is 45cm and it is folding at 2400 Lp.m. Calculate the maximum		
	descending and the rotar is rotating alcoluting looking from off. What is the maximum		
	descending and the fotor is fotating clockwise fooking from art. what is the maximum		
2	The turbine roter of a shin has 2.4 tonnes and rotetes at 1750 r.n.m. cleakwise when	15	12 M
3	viewed from the aft. The radius of gyration of the rotor is 300 mm. Determine the	LJ	12 11
	gyroscopic couple and its effect when		
	i. The ship turns right at an radius of 250 m with a speed of 22		
	kmph,		
	ii. The ship pitches with the bow rising at an angular velocity of		
	0.85 rad/sec, and		
	III. The ship fons at an angular velocity of 0.15 fad/sec.		
4	A racing car weighs 20 KN. It has a wheel base of 2 m, track width 1 m and height of	L1	12 M
	C.G. 300mm above the ground level and lies midway between the front and rear axle.		
	The engine flywheel rotates ar 300 r.p.m clockwise when viewed from the front. The		
	moment of inertia of the flywheel is 4 kg-m ² . Find the reactions between the wheels and		
	the ground when the car takes a curve of 15 m radius towards right at 30 km/hr, taking		
	into consideration the gyroscopic and the centrifugal effects. Each wheel radius towards		
	radius is 400 mm.		
5	Each road wheel of a motor cycle has a mass moment of inertia of 1.5 kg-m ² . The	L1	12 M
	rotating parts of the engine of the motor cycle have a mass moment of inertia of 0.25		
	kg-m ² . The speed of the engine is 5 times the speed of the wheels and is in the same		
	sense. The mass of the motor cycle with its rider is 250kg and its centre of gravity is 0.6		
	m above the ground level. Find the angle of heel if the cycle is traveling at 50 km/hr		

	and is taking a turn of 30 m radius. The wheel diameter is 0.6 m.		
6	(a) A vertical double steam engine develops 75 KN at 250 r.p.m. the maximum fluctuation of energy is 30 percent of the work done per stroke. The maximum and minimum speeds are not to vary more than 1% on either of the mean speed. Find the mass of the fly wheel required if the radius of gyration is 0.6 meters.	L1	6M
	(b) The radius of gyration of a fly wheel is 1 meter and the fluctuation of speed is not to exceed 1% of the mean speed of the fly wheel. If the mass of the fly wheel is 3340 kg and the steam engine develops 150 KW at 135 r.p.m. then find 1) Maximum fluctuation of energy, and 2) Coefficient of fluctuation of energy.	L1	6 M
7	The turning moment diagram for a petrol engine is drawn to a vertical scale of 1mm to 6 Nm and horizontal scale of 1mm to 10. The turning moment repeats itself after every half revolution of the engine. the areas above and below the mean torque line are 305, 710, 50, 350, 980, and 275mm2. Mass of rotating parts is 40 kg at a radius of gyration of 140 mm. Calculate the coefficient of fluctuation of speed if the mean speed is 1500 r.p.m.	L1	12 M
8	The turning moment diagram for a multi-cylinder engine has been drawn to scale of 1mm =4500N-m vertically and 1mm=2.4 0 horizontally. the intercepted areas between output torque curve and mean resistance line taken in order from one end are 342, 23, 245, 303, 115, 232, 227 and 164 mm ² , when the engine is running at 150 r.p.m. if the mass of the fly wheel is 1000 kg and the total fluctuation of speed does not exceed 3% of mean speed, find the minimum value of the radius of gyration.	L1	12 M
9	 The torque delivered by a two-stroke engine is represented by T=100+300 sin2 (θ)-500cos 2(θ) N-m, Where 'θ' is the angle turned by the crank from the inner-dead centre. The engine speed is 250 rpm. The mass of the flywheel is 400 kg and radius of gyration 400 mm. Determine: (i) the power developed , (ii) the total percentage fluctuation of speed, (iii) the angular acceleration of fly wheel when the crank has rotated through an angle of 60⁰ from the inner dead centre, and (iv) the maximum angular acceleration and retardation of the fly wheel. 	L4	12 M
10	 The torque exerted on the crank shaft of a two-stroke engine is given by the equation (N-M) =145,00+2300sin2(θ)-1900cos2(θ) where 'θ' is the crank angle angle displacement from the inner dead centre. Assuming the resisting torque to be constant, determine; 1. The power of the engine when the speed is 150 r.p.m. 2. The moment of inertia of the fly wheel if the speed variation is not to exceed ±0.5% of the mean speed, and 3. The angular acceleration of the fly wheel when the crank has turned through 300 from the IDC. 	L5	12 M

UNIT -II (CLUTCHES, BRAKES AND DYNAMOMETERS)

1	(a) Explain the working of a single-plate clutch with neat sketch	L2	6M
	(b) A single plate clutch, effective on both sides, is required to transmit 25 kW	L5	6M
	at 3000 r.p.m. Determine the outer and inner radii of a frictional surface if the		
	coefficient of friction is 0.255, the ratio of radii is 1.25 and the maximum		
	pressure is not to exceed 0.1 N/mm^2 . Also determine the axial thrust to be		
	provided by springs. Assume the theory of uniform wear.		
2	A multi-disc clutch has three discs on the driving shaft and two on the driven	L1	12M
	shaft The outside diameter of the contact surfaces is 240 mm and inside		
	diameter 120 mm. Assuming uniform wear and coefficient of friction as 0.3		
	find the maximum axial intensity of pressure between the discs for transmitting		
	25 kW at 1575 r.p.m.		
3	An engine developing 45 kW at 1000 r.p.m. is fitted with a cone clutch built	L5	12M
	inside the flywheel. The cone has a face angle of 12.5° and a maximum mean		
	diameter of 500 mm. The coefficient of friction is 0.2. The normal pressure on		
	the clutch face is not to exceed 0.1 N/mm ² . Determine 1.the axial spring force		
	necessary to engage to clutch, and 2.the face width required.		
4	A conical friction clutch is used to transmit 90 kW at 1500 r.p.m. The semi cone	L1	12M
	angle is 20° and the coefficient of friction is 0.2. If the mean diameter of the		
	bearing surface is 375 mm and the intensity of normal pressure is not to exceed		
	0.25 N/mm2, find the dimensions of the conical bearing surface and the axial		
	load required.		
5	A centrifugal clutch is to transmit 15 kW at 900 r.p.m. The shoes are four in	L5	12M
	number. The speed at which the engagement begins is 3/4th of the running		
	speed. The inside radius of the pulley rim is 150 mm and the center of gravity of		
	the shoe lies at 120 mm from the center of the spider. The shoes are lined with		
	Ferrodo for which the coefficient of friction may be taken as 0.25. Determine 1.		
	Mass of the shoes, and 2. Size of the shoes, if angle subtended by the shoes at		
	the center of the spider is 60° and the pressure exerted on the shoes is 0.1		
	N/mm ² .		
6	A band brake acts on the 3/4th of circumference of a drum of 450 mm diameter	L1	12M
	which is keyed to the shaft. The band brake provides a braking torque of 225 N-		
	m. One end of the band is attached to a fulcrum pin of the lever and the other		
	end to a pin 100 mm from the fulcrum. If the operating force is applied at 500		
	mm from the fulcrum and the coefficient of friction is 0.25, find the operating		
	force when the drum rotates in the (a) anticlockwise direction, and (b) clockwise		
	direction.		
7	A band and block brake, having 14 blocks each of which subtends an angle of	L1	12M
	15° at the centre, is applied to a drum of 1 m effective diameter. The drum and		
	flywheel mounted on the same shaft has a mass of 2000 kg and a combined		
	radius of gyration of 500 mm. The two ends of the band are attached to pins on		
	opposite sides of the brake lever at distances of 30 mm and 120 mm from the		
	fulcrum. If a force of 200 N is applied at a distance of 750 mm from the		
	fulcrum, find: 1. maximum braking torque, 2. angular retardation of the drum,		

	and 3. time taken by the system to come to rest from the rated speed of 360		
	r.p.m. The coefficient of friction between blocks and drum may be taken as		
	0.25.		
8	Describe the construction and operation of a (a) Prony brake and (b) rope brake	L2	12M
	absorption dynamometer with neat sketch.		
	Describe with sketches one form of torsion dynamometer and explain in detail	L2	12M
9	the calculations involved in finding the power transmitted.		
10	A torsion dynamometer is fitted to a propeller shaft of a marine engine. It is	L1	12M
	found that the shaft twists 2° in a length of 20 metres at 120 r.p.m. If the shaft is		
	hollow with 400 mm external diameter and 300 mm internal diameter, find the		
	power of the engine. Take modulus of rigidity for the shaft material as 80 GPa.		

1	(a) Explain with neat sketch the working principle of centrifugal/porter governor	L2	6M
	(b) Calculate the vertical height of a Watt governor when it rotates at 60 r.p.m. Also find the change in vertical height when its speed increases to 61 r.p.m.	L1	6M
2	(a) Derive the expression for Porter governor	L3	6M
	(b) Derive the expression for Proell governor	L3	6M
3	A Porter governor has equal arms each 250 mm long and pivoted on the axis of rotation. Each ball has a mass of 5 kg and the mass of the central load on the sleeve is 25 kg. The radius of rotation of the ball is 150 mm when the governor begins to lift and 200 mm when the governor is at maximum speed. Find the minimum and maximum speeds and range of speed of the governor.	L1	12M
4	The arms of a Porter governor are each 250 mm long and pivoted on the governor axis. The mass of each ball is 5 kg and the mass of the central sleeve is 30 kg. The radius of rotation of the balls is 150 mm when the sleeve begins to rise and reaches a value of 200 mm for maximum speed. Determine the speed range of the governor. If the friction at the sleeve is equivalent of 20 N of load at the sleeve, determine how the speed range is modified.	L5	12M
5	In an engine governor of the Porter type, the upper and lower arms are 200 mm and 250 mm respectively and pivoted on the axis of rotation. The mass of the central load is 15 kg, the mass of each ball is 2 kg and friction of the sleeve together with the resistance of the operating gear is equal to a load of 25 N at the sleeve. If the limiting inclinations of the upper arms to the vertical are 30° and 40° , find, taking friction into account, range of speed of the governor.	L1	12M
6	A Porter governor has all four arms 250 mm long. The upper arms are attached on the axis of rotation and the lower arms are attached to the sleeve at a distance of 30 mm from the axis. The mass of each ball is 5 kg and the sleeve has a mass of 50 kg. The extreme radii of rotation are 150 mm and 200 mm. Determine the range of speed of the governor.	L5	12M
7	A Proell governor has equal arms of length 300 mm. The upper and lower ends of the arms are pivoted on the axis of the governor. The extension arms of the lower links are each 80 mm long and parallel to the axis when the radii of rotation of the balls are 150 mm and 200 mm. The mass of each ball is 10 kg and the mass of the central load is 100 kg. Determine the range of speed of the governor.	L5	12M
8	A governor of the Proell type has each arm 250 mm long. The pivots of the upper and lower arms are 25 mm from the axis. The central load acting on the sleeve has a mass of 25 kg and the each rotating ball has a mass of 3.2 kg. When the governor sleeve is in mid-position, the extension link of the lower arm is vertical and the radius of the path of rotation of the masses is 175 mm. The vertical height of the governor is 200 mm. If the governor speed is 160 r.p.m. when in mid-position, find : 1. length of the extension link; and 2. tension in the upper arm.	L1	12M
9	A Hartnell governor having a central sleeve spring and two right-angled bell crank levers moves between 290 r.p.m. and 310 r.p.m. for a sleeve lift of 15 mm. The sleeve arms and the ball arms are 80 mm and 120 mm respectively. The levers are pivoted at 120 mm from the governor axis and mass of each ball is 2.5 kg. The ball arms are parallel to the governor axis at the lowest equilibrium speed. Determine : 1. loads on the spring at the lowest and the highest equilibrium speeds, and 2. stiffness of the spring.	L5	12M
10	What is meant by Sensitiveness of governors, Differentiate between a Governor and a	L1	12M

UNIT -III (GOVERNORS)

flywheel.What is meant by isochronous condition in Governors?

UNIT -IV (BALANCING OF ROTATING AND RECIPROCATING MASSES)

1	Four masses m1, m2, m3, and m4 are 200 kg, 300 kg, 240 kg and 260 kg respectively.	L1	12M
	The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively		
	and the angles between successive masses are 45° , 75° and 135° . Find the position and		
-	magnitude of the balance mass required, if its radius of rotation is 0.2 m.	T 4	1035
2	A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and	L1	12M
	200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes		
	measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks		
	measured anticlockwise are A to B 45° , B to C 10° and C to D 120° . The balancing		
	masses are to be placed in planes X and Y. The distance between the planes A and X is		
	balancing masses revolve at a radius of 100 mm find their magnitudes and angular		
	balancing masses revolve at a fadius of 100 min, find then magnitudes and angular		
2	Four massage A. P. C and D as shown halow are to be completely belanced	Τ1	1214
3	Four masses A, B, C and D as shown below are to be completely balanced	LI	12111
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	<i>Kaalus (mm)</i> 180 240 120 150		
	The planes containing masses B and C are 300 mm apart. The angle between		
	n planes containing B and C is 90° B and C make angles of 210° and 120°		
	respectively with D in the samesense Find		
	1. The magnitude and the angular position of mass A : and		
	2. The position of planes A and D		
4	A. B. C and D are four masses carried by a rotating shaft at radii 100, 125, 200 and	L1	12M
	150 mm respectively. The planes in which the masses revolve are spaced 600 mm		
	apart and the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find the		
	required mass A and the relative angular settings of the four masses so that the shaft		
	shall be in complete balance		
5	A shaft carries four masses in parallel planes A, B, C and D in this order along its	L5	12M
	length. The masses at B and C are 18 kg and 12.5 kg respectively, and each has an		
	eccentricity of 60 mm. The masses at A and D have an eccentricity of 80 mm. The		
	angle between the masses at B and C is 100° and that between the masses at B and A is		
	190°, both being measured in the same direction. The axial distance between the		
	planes A and B is 100 mm and that between B and C is 200 mm. If the shaft is in		
	complete dynamic balance, determine: 1. The magnitude of the masses at A and D; 2.		
	the distance between planes A and D; and 3. the angular position of the mass at D.		
6	Differentiate 'static balancing' and 'dynamic balancing'. State the necessary	L5	12M
	conditions to achieve them.	T 4	10
7	A single cylinder reciprocating engine has speed 240 r.p.m., stroke 300 mm, mass of	L1	12M
	reciprocating parts 50 kg, mass of revolving parts at 150 mm radius 37 kg. If two third		
	of the reciprocating parts and all the revolving parts are to be balanced, find : 1. The		
	balance mass required at a radius of 400 mm, and 2. The residual unbalanced force when the englisher matrix $d \in O^{0}$ form to be $d = 1$		
0	when the crank has rotated 60° from top dead centre.	10	1014
δ	Derive the following expression of effects of partial balancing in two cylinder	L2	1211
	blow		
	UIUW		

9	The following data refer to two cylinder locomotive with cranks at 90° : Reciprocating mass per cylinder = 300 kg; Crank radius = 0.3 m; Driving wheel diameter = 1.8 m; Distance between cylinder centre lines = 0.65 m; Distance between the driving wheel central planes = 1.55 m. Determine : 1. the fraction of the reciprocating masses to be balanced, if the hammer blow is not to exceed 46 kN at 96.5 km/hr.; 2. the variation in tractive effort; and 3. the maximum swaying couple.	L5	12M
10	A, B, C and D are four masses carried by a rotating shaft at radii 120, 150, 200 and 180 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 15 kg, 10 kg, and 8 kg respectively. Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance	L1	12M

UNIT -V (MECHANICAL VIBRATIONS)

1	Derive an expression for the natural frequency of the free longitudinal vibration by	L3	12M
2	(1) Equilibrium method (11) Energy method (11) Rayleign's method	T C	1014
2	A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 100 kg at its	L5	1211
	free end. The Young's modulus for the shaft material is 200 GN/m2 Determine the		
	frequency of longitudinal and transverse vibrations of the shaft.		
3	A shaft of length 0.75 m, supported freely at the ends, is carrying a body of mass 90 kg	L1	12M
	at 0.25 m from one end. Find the natural frequency of transverse vibration. Assume E		
	= 200 GN/m2 and shaft diameter $= 50 mm$.		
4	Derive the natural frequency of Free Transverse Vibrations by (i) Rayleighs method	L3	12M
	(ii) Dunkerleys method.		
5	A shaft 50 mm diameter and 3 metres long is simply supported at the ends and carries	L1	12M
_	three loads of 1000 N. 1500 N and 750 N at 1 m. 2 m and 2.5 m from the left support.		
	The Young's modulus for shaft material is 200 GN/m ² . Find the frequency of		
	transverse vibration		
6	A vibrating system consists of a mass of 200 kg, a spring of stiffness 80 N/mm and a	1.5	12M
0	damper with damping coefficient of 800 N/m/s. Determine the frequency of vibration	Le	
	of the system		
7	The measurements on a machanical vibrating system show that it has a mass of 8 has	T 1	121/
/	The measurements on a mechanical violating system show that it has a mass of 8 kg	LI	12111
	and that the springs can be combined to give an equivalent spring of stillness 5.4		
	N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N		
	when the mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2.		
	damping factor, 3. Logarithmic decrement, and 4. ratio of two consecutive amplitudes.		
8	Derive the Natural Frequency of Free Torsional Vibrations	L3	12M
9	A shaft of 100 mm diameter and 1 metre long has one of its end fixed and the other	L5	12M
	end carries a disc of mass 500 kg at a radius of gyration of 450 mm. The modulus of		
	rigidity for the shaft material is 80 GN/m2.Determine the frequency of torsional		
	vibrations.		
10	A circular rod of length 1.0 m, supported freely at the ends, is carrying a body of mass	L1	12M
	100 kg at 0.35 m from one end. Find the natural frequency of transverse vibration.		
	Assume $E = 220 \text{ GN/m2}$ and shaft diameter = 60 mm.		
			1

PREPARED BY V.KARTHIKEYAN